OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **BAPTIST POND**, **SPRINGFIELD**, the program coordinators have made the following observations and recommendations.

Thank you for your continued hard work sampling the pond this season! Your monitoring group sampled the deep spot **three** times. As you know, conducting multiple sampling events each season enables DES to more accurately detect water quality changes. Keep up the good work!

FIGURE INTERPRETATION

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling season that the pond has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration *increased steadily* from **June** to **August**.

The historical data (the bottom graph) show that the 2006 chlorophyll-a mean is *greater than* the state median and the similar lake median. For more information on the similar lake median, refer to Appendix F.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *variable* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *fluctuated between approximately 4.5 and 9.3 mg/m³* since 2003.

Please keep in mind that this trend is based on limited data. After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

While algae are naturally present in all ponds, an excessive or increasing amount of any type is not welcomed. In freshwater ponds, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

Figures 2a and 2b and Tables 3a and 3b: Figure 2a in Appendix A shows the historical and current year data for transparency without the use of a viewscope and Figure 2b shows the current year data for transparency with the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each sampling season that the pond has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.**

The current year data (the top graph) show that the non-viewscope inlake transparency *decreased* from **June** to **August**.

It is important to note that as the chlorophyll concentration *increased* at the deep spot this season, the transparency *decreased*. We typically expect this *inverse* relationship in lakes. As the amount of algal cells in the water *increases*, the depth to which one can see into the water column typically *decreases*.

The historical data (the bottom graph) show that the 2006 mean non-viewscope transparency is **slightly less than** the state median and the similar lake median, and is the **least deep** (meaning **shallowest**) annual mean since monitoring began in **2003**. Please refer to Appendix F for more information about the similar lake median.

The current year data (the top graph) show that the viewscope in-lake transparency *decreased* from **June** to **August**, as did the transparency measured without the viewscope. It is important to point out that the transparency measured with the viewscope was typically *greater than* the transparency measured without the viewscope. As discussed previously, a comparison of the transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is also important to note that viewscope transparency data is not compared to a New Hampshire median or similar lake median. This is because lake transparency has not been historically measured by DES with a viewscope. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *decreasing*, meaning *worsening*, trend for in-lake non-viewscope transparency since monitoring began in **2003**. Again, please keep in mind that this trend is based on only *four* years of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts should continually be made to stabilize stream banks, pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the pond. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.

Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus

in a pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *decreased greatly* from **June** to **July**, and then *increased slightly* from **July** to **August**. It is important to point out that the epilimnetic phosphorus concentration was *elevated* (48 ug/L) on the **June** sampling event. Due to the unusually high water levels and amount of rainfall during the spring of 2006, it is possible that phosphorus-enriched water was being released by the wetland systems that flow into the tributaries and ultimately into the lake.

The historical data show that the 2006 mean epilimnetic phosphorus concentration is *greater than* the state median and the similar lake median. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *decreased gradually* from **June** to **August**.

The historical data show that the 2006 mean hypolimnetic phosphorus concentration is **slightly less than** the state median and the similar lake median. Please refer to Appendix F for more information about the similar lake median.

Overall, visual inspection of the historical data trend line for the epilimnion and hypolimnion shows an *increasing*, *meaning* worsening, phosphorus trend since monitoring began in 2003.

As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the sources of phosphorus in a watershed and how excessive phosphorus loading can negatively affect the ecology and the recreational, economical, and ecological value of lakes and ponds.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 in Appendix B lists the current and historical phytoplankton species observed in the pond. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample.

The dominant phytoplankton species observed in the **June** sample were *Rhizosolenia* (diatom), *Asterionella* (diatom), *Tabellaria* (diatom) and *Dinobryon* (golden-brown).

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds.

> Table 2: Cyanobacteria

A small amount of the cyanobacteria *Anabaena* and *Microcystis* were observed in the **June** plankton sample in 2006. *These species, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans.* Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria.

Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased and favorable environmental conditions occur, such as a period of sunny, warm weather.

The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the pond by eliminating fertilizer use on lawns, keeping the pond shoreline natural, revegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the pond. If a fall bloom occurs, please collect a sample in any clean jar or bottle and contact the VLAP Coordinator.

> Table 4: pH

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this season ranged from **6.07** in the hypolimnion to **6.48** in the epilimnion, which means that the water is *slightly acidic*.

It is important to point out that the pH in the hypolimnion (lower layer) was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the lake bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the presence of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is not much that can be feasibly done to effectively increase pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.9 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **4.5 mg/L** this season, which is **slightly less than** the state median. In addition, this indicates that the pond is **moderately vulnerable** to acidic inputs.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity in the epilimnion at the deep spot this season was **77.21 uMhos/cm**, which is *greater than* the state median. However, the 2006 conductivity results for the deep spot and tributaries were *lower than* has been measured since monitoring began in 2003. It is possible that the high water levels during 2006 diluted the conductivity concentration in surface waters throughout the watershed.

The conductivity continued to remain *greater than* the state median in the pond and tributaries this season. Typically, increasing conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff, which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and storm event sampling along the tributaries with *elevated* conductivity so that we can determine what may be causing the increases.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

We also recommend that your monitoring group conduct a shoreline conductivity survey of the lake and the tributaries with *elevated* conductivity to help pinpoint the sources of *elevated* conductivity.

To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at www.des.nh.gov/wmb/vlap/2004/documents/Appendix_D.pdf or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. The most commonly used de-icing material in New Hampshire is salt (sodium chloride).

Chloride sampling was conducted during **2006.** Please refer to the discussion of Table 13 for information regarding chloride results.

> Table 7a and Table 7b: Total Kjeldahl Nitrogen and Nitrite+Nitrate Nitrogen

Table 7a in Appendix B presents the current year and historical Total Kjeldahl Nitrogen and Table 7b presents the current year and historical nitrite and nitrate nitrogen. Nitrogen is another nutrient that is essential for the growth of plants and algae. Nitrogen is typically the limiting nutrient in estuaries and coastal ecosystems. However, in freshwater, nitrogen is not typically the limiting nutrient. Therefore, nitrogen is not typically sampled through VLAP. However, if phosphorus concentrations in freshwater are elevated, then nitrogen loading may stimulate additional plant and algal growth. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The pond is likely **phosphorus-limited**. Therefore, it is not critical to conduct nitrogen sampling.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration was *elevated* (60 ug/L) in **McAlvin Brook** on the **June** sampling event. The turbidity of the sample was *slightly elevated* (2.87 NTUs) and sampling was conducted while it was raining, which suggests that erosion is occurring in this area of the watershed. Therefore, we recommend that your monitoring group conduct a stream survey and storm event sampling along this tributary. This additional sampling may allow us to better determine the sources of phosphorus in this area of the watershed.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special

topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data
Table 9 in Appendix B shows the dissolved oxygen/temperature
profile(s) collected during 2006. Table 10 in Appendix B shows the
historical and current year dissolved oxygen concentration in the
hypolimnion (lower layer). The presence of dissolved oxygen is vital to
fish and amphibians in the water column and also to bottom-dwelling
organisms. Please refer to the "Chemical Monitoring Parameters"
section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** at all deep spot depths sampled in the pond on the **June** sampling event. Typically, shallow lakes and ponds that are not deep enough to stratify into more than one or two thermal layers will have relatively high amounts of oxygen at all depths. This is due to continual lake mixing and diffusion of oxygen into the bottom waters induced by wind and wave action.

The dissolved oxygen concentration was *greater than* **100 percent** saturation at **2.0** meters at the deep spot on the **June** sampling event. Layers of algae can increase the dissolved oxygen concentration in the water column since oxygen is a by-product of photosynthesis. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column.

This DES biologist has collected the dissolved oxygen profile in *either* **June** or **July** since monitoring began in **2003**. We recommend that the annual biologist visit for the **2007** sampling season be scheduled during **August** so that we can determine if oxygen is depleted in the hypolimnion *later* in the sampling season.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

As discussed previously, the turbidity in the **McAlvin Brook** sample was **slightly elevated** (2.87 NTUs) on the **June** rain event. Also, the turbidity in the **Stoney Brook Inlet** sample collected in **August** was also **slightly elevated** (2.94 NTUs). The August sampling event was conducted within 24 hours of a minor rain event. These data suggest that erosion may be occurring in areas of the watershed.

If you suspect that erosion is occurring within the watershed, we recommend that your monitoring group conduct a stream survey and storm event sampling along the major tributaries. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator.

> Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

> Table 13: Chloride

Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The **Stoney Brook Inlet** was sampled for chloride on the **June** sampling event. The result was **45 mg/L**, which is **less than** the

state acute and chronic chloride criteria, but is greater than we would typically expect to measure in undisturbed surface waters.

We recommend that your monitoring group conduct chloride sampling in the epilimnion at the deep spot and in the tributaries near salted roadways, particularly in the spring, soon after snow-melt and after rain events during the summer. This will establish a baseline of data that will assist your monitoring group and DES to determine lake quality trends in the future.

Please note that there will be an additional cost for each of the chloride samples and that these samples must be analyzed at the DES laboratory in Concord. In addition, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

In addition, if your group is concerned about salt use on a particular roadway, we recommend contacting the town road agent or the Department of Transportation to discuss the implementation of a low-salt area near the lake and/or its major tributaries.

Table 14: Current Year Biological and Chemical Raw Data
Table 14 in Appendix B lists the most current sampling season
results. Since the maximum, minimum, and annual mean values for
each parameter are not shown on this table, this table displays the
current year "raw," meaning unprocessed, data. The results are
sorted by station, depth, and then parameter.

> Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled-out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future re-occurrences of improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or www.des.nh.gov/factsheets/ard/ard-32.htm.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975.

Best Management Practices for Well Drilling Operations, DES fact sheet WD-WSEB-21-4, (603) 271-2975 or www.des.nh.gov/factsheets/ws/ws-21-4.htm.

Biodegradable Soaps and Water Quality, DES fact sheet BB-54, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-54.htm.

Canada Geese Facts and Management Options, DES fact sheet BB-53, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-53.htm.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-10.htm.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-1.htm.

Freshwater Jellyfish In New Hampshire, DES fact sheet WD-BB-5, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-51/htm.

Impacts of Development Upon Stormwater Runoff, DES fact sheet WD-WQE-7, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-7.htm.

IPM: An Alternative to Pesticides, DES fact sheet WD-SP-3, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-3.htm.

Iron Bacteria in Surface Water, DES fact sheet WD-BB-18, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-18.htm.

Lake Foam, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-5.htm.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-9.htm.

Low Impact Development Hydrologic Analysis. Manual prepared by Prince George's County, Maryland, Department of Environmental Resources. July 1999. To access this document, visit

www.epa.gov/owow/nps/lid_hydr.pdf or call the EPA Water Resource Center at (202) 566-1736.

Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-17.htm.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-2.htm.

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-4.htm.

Sand Dumping - Beach Construction, DES fact sheet WD-BB-15, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-15.htm.

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-4.htm.

Soil Erosion and Sediment Control on Construction Sites, DES fact sheet WQE-6, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-6.htm.

Swimmers Itch, DES fact sheet WD-BB-2, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-2.htm.

Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-4.htm.

Watershed Districts and Ordinances, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-16.htm.